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Integral equation model for warm and hot dense mixtures
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In a previous work [C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)] a model for the calculation
of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the
electronic structure of one atom in a plasma is determined using a density-functional-theory-based average-atom
(AA) model and the ionic structure is determined by coupling the AA model to integral equations governing the
fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with
many nuclear species, i.e., mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement
fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham
molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.
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I. INTRODUCTION

Warm and hot dense matter refers to plasmas roughly
as dense as solids up to thousands of times solid density.
Temperatures range from approximately 1 eV up to several
thousand eV. In nature such plasmas are found in a variety
of astrophysical objects, including the cores of giant planets
and in the envelopes of white dwarfs [1,2]. Such plasmas are
also of interest to the inertial confinement fusion community
where these conditions are reached in implosion experiments
[3]. Often the plasmas in question are mixtures. For example,
CH1.36

1 is of interest as an ablator material in inertial con-
finement fusion experiments at the National Ignition Facility
(NIF) [4] and carbon-helium mixtures occur in white dwarf
stars [1,2].

One of the challenges of modeling warm and hot dense
matter is to accurately calculate the electronic and ionic
structures in a single model. Benchmark calculations have been
made using density-functional-theory molecular dynamics
(DFT-MD). This method is thought to be accurate and gives
an essentially complete description of the plasma. Both
Kohn-Sham (KS) [5,6] and orbital-free (OF) [7] versions of
DFT-MD exist. The primary limitation of these methods is
their high computational cost. This is particularly acute for
KS calculations, where a poor scaling of the computational
cost with temperature limits it to low temperatures. The OF
method does not suffer from this poor scaling, but is still very
expensive, typically limiting the number of particles in the MD
simulation to a few 100s [8–11]. Density-functional-theory
molecular dynamics calculations are especially challenging for
mixtures, where asymmetries in masses and number fractions
increase the computational demands.

Starrett and Saumon presented an alternative method for
calculating the electronic and ionic structures of warm and hot
dense matter, in the form of pair distribution functions [12,13].
Excellent agreement was found with corresponding DFT-MD

1The notation means a carbon-hydrogen mixture in the ratio
0.424:0.576.

simulations over a wide range of densities and temperatures.
The principal advantage of this model is that it is much less
computationally expensive than the corresponding DFT-MD
simulations. The model uses a DFT-based average-atom (AA)
approach to calculate the properties of one atom in the plasma
and couples this to the quantum Ornstein-Zernike (QOZ)
equations for the ionic structure. The QOZ equations are
integral equations that can be rapidly solved, giving the ion-ion
and ion-electron pair distribution functions. The AA model can
be solved using either KS or OF functionals. A key assumption
of the model is that the electronic density of the plasma can be
written as a superposition of pseudoatom electron densities.
The concept of the pseudoatom [14–16] is that of a charge
neutral, atomlike entity with a nuclear charge at its origin,
surrounded by a local, spherically symmetric electron cloud.
This electron cloud comprises the electrons that are bound to
the nucleus (together with the nucleus these form the ion), as
well as screening electrons. The model of [12,13] is, however,
limited to homonuclear plasmas. Here we extend this model
to heteronuclear plasmas, i.e., mixtures.

We first extend the QOZ equations to mixtures of quantal
electrons and N types of classical ions. The result turns out
to be a straightforward generalization of the corresponding
N -component classical OZ equations, though the derivation
is not trivial. Second, we show how the average-atom model
developed in [12,13] can be coupled to the QOZ equations
for mixtures. Finally, we present an application of the
model to CH1.36 and compare the resulting electronic and
ionic structures to OFMD and quantum molecular dynamics2

(QMD) simulations.
The resulting complete model allows rapid calculation of

the electronic and ionic structures of dense plasma mixtures
(relative to DFT-MD) with no adjustable parameters. The
extension to mixtures does not require any new physical
approximations. Inputs to the model are the ion masses and
nuclear charges, the number fractions of the ion species, as well

2This is DFT-MD with the orbital-based Kohn-Sham method.
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as the plasma mass density and temperature. Finally, we note
that the model is all electron, meaning that, unlike DFT-MD
simulations, no pseudopotential is used when solving for the
electronic structure.

The structure of this paper is as follows. In Sec. II we
develop the QOZ equations for arbitrary3 multicomponent
fluids. We start by deriving the QOZ equations for a binary
mixture (two classical ion species and quantal electrons).
The extension to the N -component mixture is then obvious
and analogous to the corresponding classical OZ equations
[17]. We then show how these equations can be written
in terms of electronic screening densities of pseudoatoms,
in analogy with the homonuclear case. The next step is to
demonstrate how the QOZ equations can be mapped onto an
effective N -component system, where the ions interact through
short-ranged electron-screened effective potentials. Finally,
we show how to calculate the screening densities for mixtures
using the average-atom model developed in [12,13]. In Sec. VII
we compare predictions of the electronic and ionic structures,
in the form of pair distribution functions, to both QMD and
orbital-free molecular dynamics (OFMD) simulations. Finally,
in Sec. VIII we present our conclusions. Unless otherwise
stated, atomic units, in which � = me = kB = e = 1, where
the symbols have their usual meaning, are used throughout.

II. QUANTUM ORNSTEIN-ZERNIKE EQUATIONS
FOR MIXTURES

We consider a mixture of N types of classical species with a
neutralizing, responding, electron gas. The electrons and ions
are in thermal equilibrium with temperature T = 1/β. The
number fraction for ions of type i is xi such that

N∑
i=1

xi = 1. (1)

If the charge of ion i is Z̄i , the average ionization of the plasma
is

Z̄ = n̄0
e

n0
I

=
N∑

i=1

Z̄ixi, (2)

where n̄0
e is the average ionized electron particle density and n0

I

is the average ion particle density. We also define the particle
density for species i as

n0
i = xin

0
I . (3)

The quantum Ornstein-Zernike matrix

Chihara [18] derived the quantum Ornstein-Zernike equa-
tions for a mixture of one classical ion species and quantum
mechanical electrons. Here we extend this derivation to a
multicomponent mixture of N classical ions and quantum
mechanical electrons. We start from the exact matrix equation
[18] in k space

χ =
[
C

β
+ (χ0)−1

]−1

, (4)

3Here arbitrary means any number fraction and mass or charge ratio.

where the underline indicates a matrix. This formula relates
the linear response functions χ for an interacting system to
those of a noninteracting system χ0 and the direct correlation
functions C. For homogeneous system these are defined in real
space as

χij (|r − r ′|) = − δ2�

δ�i(r)δ�j (r ′)
(5)

and

−1

β
Cij (|r − r ′|) ≡ δ2F ex

δni(r)δnj (r ′)

∣∣∣∣
Vi=0

, (6)

where

�i(r) = μi − Vi(r) (7)

is the intrinsic chemical potential for species i with particle
density ni(r), chemical potential μi , and external potential
Vi(r). Here � is the grand potential

� = F −
N+1∑

i

∫
d r�i(r)ni(r), (8)

F is the intrinsic free energy, and

F = F id + F ex, (9)

with F id the noninteracting intrinsic free energy and F ex the
intrinsic free energy due to interactions [17]. The notation
Vi = 0 indicates that the functional derivative is evaluated with
the external potential set to zero. Finally, the matrices have size
(N + 1) × (N + 1) for a system of electrons and N ion species
and are symmetric.

To solve the matrix equation (4) we specialize to a mixture
of quantal electrons (index e) and two classical ion species
(indices 1 and 2). This greatly simplifies the problem and the
solution to the general N + 1 problem can be inferred from the
result. We can use the fluctuation-dissipation theorem to relate
the response functions χ to the corresponding structure factors
Sij [17] provided one of the particles (i or j ) is classical,

χij (k) = −β

√
n0

i n
0
j Sij (k)

= −β

√
n0

i n
0
j

[
δij +

√
n0

i n
0
jhij (k)

]
, (10)

where δij is the Kronecker delta and hij (k) is a pair correlation
function. The 3 × 3 matrix in square brackets in Eq. (4) is now
inverted, giving the QOZ equations for a binary mixture of
classical ions and quantum electrons:

hij (k) =
(

−χ0
jj (k)

βn0
j

)[
Cij (k) +

3∑
λ=1

n0
λhiλ(k)Cλj (k)

]
, (11)

where the index λ = 3 is for the electrons and the convention
is that if either the i or j label refers to an electron, then it
is placed in the j position in Eq. (11) (recall the symmetry
hij = hji).

By simple extension we can now write down the equations
for the (N + 1)-component plasma (N classical particles and
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quantum electrons)

hij (k) =
(

−χ0
jj (k)

βn0
j

)[
Cij (k) +

N+1∑
λ=1

n0
λhiλ(k)Cλj (k)

]
, (12)

where λ = N + 1 is the index for the electrons. Equation (12)
can be compared to the familiar expression for a mixture
of N + 1 classical particles [17] [see also Eq. (17)]. The
quantum nature of the electrons is embodied in the prefactor
−χ0

ee(k)/(βn̄0
e). We note that χ0

ee is the well-known finite-
temperature, noninteracting response function [19]. At zero
temperature it is the Lindhard function [20]. For classical
particles χ0

jj (k) = −βn0
j and the prefactor equals unity.

III. INTERPRETATION OF THE QOZ EQUATIONS AS A
SYSTEM OF SCREENED IONS

The induced electronic screening density nscr
i,e (r) due to a

weak external potential −Cie/β is given by linear response
theory [21] as

nscr
i,e (k) = −Cie(k)

β
χ ′

ee(k), (13)

where

χ ′
ee(k) ≡ χ0

ee(k)

1 + χ0
ee(k)Cee(k)/β

. (14)

From Eq. (12) we therefore have

�ni,e(k) ≡ n̄0
ehie(k) = nscr

i,e (k) +
N∑

λ=1

n0
λhiλ(k)nscr

λ,e(k), (15)

where

�ni,e(r) = ni,e(r) − n̄0
e (16)

and ni,e(r) is the spherically averaged electron density around
an ion species i. The formula (15) says that for homogeneous
plasmas and weak external potentials Cie(k), the electron
density of the plasma is exactly written as the sum of
spherically symmetric screening densities nscr

i,e (r). The QOZ
equations can therefore be interpreted as relations for the
structure of a fluid of classical ions whose interactions are
screened by responding electrons with densities nscr

i,e (r).

IV. REDUCTION TO AN EFFECTIVE N-COMPONENT
SYSTEM OF CLASSICAL PARTICLES

As in the homonuclear case, to solve the QOZ equations
(12) for the ion-electron and ion-ion pair correlation functions
hie and hii we make use of the interpretation given in
Sec. III to map the QOZ equations onto their purely classical
counterparts:

hIJ (k) = CIJ (k) +
N∑

λ=1

n0
λhIλ(k)CλJ (k). (17)

This procedure has been extensively described for the homonu-
clear case [12,22]; here we give only the salient details.

We assume that there exists an effective N -component
system of classical particles, interacting through short-ranged
pair potentials VIJ (r) such that the ion-ion pair correlation
functions hIJ are identical to those of a corresponding4

(N + 1)-component system of classical particles and quantal
electrons. The ion-ion closure relation for the effective N -
component system is

hIJ (r) + 1 = exp (−βVIJ (r) + hIJ (r) − CIJ (r) + BIJ (r)),

(18)

where I,J = 1, . . . ,N and the BIJ (r) are the bridge functions
[17]. Similarly, for the (N + 1)-component system we have

hij (r) + 1 = exp

(
−β

Z̄i Z̄j

r
+ hij (r) − Cij (r) + Bij (r)

)
,

(19)

where i,j = 1, . . . ,N and Z̄i is the charge of ion i. By
assuming that hij = hIJ and Bij = BIJ , one uses the QOZ
and OZ equations (12) and (17) with Eqs. (18) and (19) to
relate the pair potentials to the screening densities:

VIJ (k) = 4πZ̄iZ̄j

k2
− Cie(k)

β
nscr

j,e(k). (20)

Recall that the ion-electron direct correlation functions Cie(k)
are also related to the screening densities via Eq. (13).

The problem of solving the QOZ equations (12) is now
reduced to solving their purely classical counterparts [Eq. (17)]
for given pair potentials VIJ , using the ion-ion closure relations
(18). To determine the potentials (20) we need the screening
densities nscr

i,e (k) for each ion and the electron-electron direct
correlation function Cee(k) [Eq. (14)]. For the latter we use
the jellium approximation, which was successful for the
homonuclear case [13]. To determine the screening densities
we also use the same approximation as for the homonu-
clear case, i.e., we determine them using an average-atom
model.

V. AVERAGE-ATOM MODEL FOR THE
SCREENING DENSITY

For the homonuclear case the method for calculating
the screening density is described in detail in [12,13]. It
is summarized here to provide a basis for its extension to
mixtures. We assume that the electron density of the plasma
is given by a superposition of charge neutral pseudoatom
electron densities. Conceptually, the pseudoatom electron
density nPA

e (r) is a local, spherically symmetric electron cloud
that contains both the bound states, with electron density
nion

e (r), and the screening electrons nscr
e (r) that contribute to

the valence electrons

nPA
e (r) = nion

e (r) + nscr
e (r). (21)

Clearly, the superposition approximation will be excellent for
deeply bound states and Eq. (15) demonstrates that it is also

4Here corresponding means that the classical particles have the same
charge, mass, and number densities.
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appropriate for the valence states provided these states can
be reasonably well represented by linear response theory.
It becomes inaccurate in thermodynamic regimes where a
significant fraction of the atoms in the plasma form molecules.

To calculate nPA
e (r) we consider a system with a nucleus

at the origin, surrounded by a spherically averaged ion
distribution (the full system). The electron density nfull

e (r)
for this system is found by minimizing the free energy
for a given kinetic energy functional (e.g., Kohn-Sham or
Thomas-Fermi) and a given exchange-correlation functional.
We then consider a system with the same spherically averaged
ion distribution but no central nucleus (the external system).
The electron density next

e (r) for this external system is found
in the same way as for the full system. The difference
in these electron densities defines the pseudoatom electron
density

nPA
e (r) = nfull

e (r) − next
e (r). (22)

The screening density is then obtained after defining the
electron density of bound states [Eq. (21)].

The above procedure requires a knowledge of the spheri-
cally averaged ion distribution. This distribution is given by
the ion-ion pair distribution function g(r) [=h(r) + 1]. In
the ion-sphere (IS) version of the homonuclear model [13],
we solve for the screening density, as we have described
above, with g(r) set to be a step function at the ion-sphere
radius R,

g(r) = 
(r − R), (23)

where

4πR3

3
= V ion = M

ρ
(24)

and V ion is the volume per ion, which is determined from
input of the mass density ρ and atomic mass M . In [13] it was
shown that the g(r) from this IS model is very close to that of a
self-consistent version of the model, where the calculated g(r)
is fed back as input to the AA model and the cycle repeated
until converged. This result was explained in [13] by noting
that in the linear response regime nscr

e (r) is fully independent
of g(r).

The same technique for determining the screening densities
can be applied here for mixtures, where now an AA model
is solved for each component. Because of the demonstrated
insensitivity of nscr

e (r) to g(r) we use the ion-sphere AA model
[13], in both the QM and Thomas-Fermi (TF) versions of the
model (referred to as IS-QM and IS-TF). For species i the
ion-sphere radius Ri is related the volume per ion V ion

i but,
unlike the homonuclear case, the volumes V ion

i are not uniquely
determined from input. The volumes do, however, satisfy

N∑
i=1

xiV
ion
i =

∑N
i=1 xiMi

ρ
, (25)

where Mi is the atomic mass of species i. Further, the
chemical potentials μi

e of the electrons for each average atom
(i = 1, . . . ,N) must be equal

μi
e = μe. (26)
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FIG. 1. (Color online) Ion-ion pair distribution functions for CH1.36. Comparison of the IS-TF (solid lines) and OFMD simulation results
(dashed lines) in the TF approximation for C-C (black, rightmost lines), C-H (red, middle lines), and H-H (green, leftmost lines).
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The solution of the AA model provides a relation between μi
e

and V ion
i . Thus, the set of V ion

i are adjusted to satisfy Eqs. (25)
and (26), with μe a priori unknown. The solution can be sped
up considerably by pretabulating μi

e as a function of V ion
i and

T for the species of interest. Thus we obtain a single-electron
chemical potential for the mixture, bound and continuum
wave functions, and the nucleus-electron interaction potentials
as well as the ion and screening densities for each ion
species.

VI. PAIR DISTRIBUTION FUNCTIONS

The above model allows us to determine the ion-ion
and electron-ion pair distribution functions gij (r) and gie(r),
respectively. Here gij (r) is simply related to the pair correlation
functions hij (r),

gij (r) = 1 + hij (r). (27)

The all-electron, electron-ion pair distribution functions are
given by

gie(r) = nall
i,e(r)

nall
e

, (28)

where

nall
e =

N∑
λ=1

n0
λZλ (29)

is the average electron density of all electrons in the plasma
(including bound electrons), Zλ is the nuclear charge of
species λ, and the spherically averaged electron density about
a nucleus of species i is

nall
i,e(r) ≡ nPA

i,e (r) +
N∑

λ=1

n0
λ

∫
d3r ′giλ(|r − r ′|)nPA

λ,e(r ′). (30)

This last equation is a generalization of Eq. (15) to all electrons
and written in real space.

VII. COMPARISON WITH DFT-MD SIMULATIONS

All calculations with the present model have been car-
ried out using the Dirac exchange functional [23] and the
hypernetted-chain (HNC) closure relation in which BII =
BIJ = BJJ = 0. The latter approximation is not necessary
since bridge function approximations exist [24–27], but is
adequate for the present purposes. The bridge function will
become important for strong coupling cases.

In Fig. 1 we compare ion-ion pair distribution functions
gij (r) from the present model in the TF approximation (IS-TF)
to OFMD simulations for CH1.36, which is close to the
stochiometry of the plastic ablator used in inertial confinement
capsules [3,4]. The OFMD simulations use the same exchange
potential [23] and the TF functional and so are directly
comparable to the IS-TF calculations and were carried out
using 250 particles (106 carbon and 144 hydrogen) in a cubic
cell with periodic boundary conditions. The Hartree potential
is calculated with a fast Fourier transform on a regular grid
with 643 grid points and the time step is 0.01ωp, where ωp
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FIG. 2. (Color online) Comparison of the IS-TF ion-electron pair
distribution functions for CH1.36 at 2.94 g/cm3 and the OFMD
simulation results in the TF approximation for carbon (black,
rightmost lines), hydrogen (red, leftmost lines). Solid lines are the
IS-TF model and dashed lines are the OFMD. Also shown (dotted
lines) is the contribution to gie(r) from nPA

e (r) alone. The thin vertical
lines indicate the cutoff radius rc used to generate the pseudopotentials
for H (left) and C (right) in the OFMD simulations.

is the plasma frequency. The agreement between the IS-TF
model and OFMD simulations is very good to excellent for
all densities and temperatures, for all three pair distribution
functions (C-C, C-H, and H-H). The largest difference is seen
for the highest density and lowest temperature, where the
ion-ion coupling is the strongest. The differences seen in this
regime likely stem from the use of the HNC ion-ion closure
relation, which becomes less accurate when the coupling is
strong.

In Fig. 2 ion-electron pair distribution functions gie(r)
corresponding to the lowest density calculations in Fig. 1 are
shown. Again, the agreement between the IS-TF model and the
OFMD simulations is excellent for all three temperatures.
The OFMD simulations use a pseudopotential that removes
the Coulombic divergence in the electron-ion interaction
potential and replaces it with a well behaved, but artificial,
pseudopotential [28]. For this reason we do not expect the
OFMD electron densities to be accurate for r < rc, where the
actual potential has been replaced by the pseudopotential. The
OFMD simulations return a finite value for gie(r) at r = 0,
in contrast to the IS-TF results, which exhibit the correct
divergent behavior [limr→0 gie(r) → r−3/2]. This highlights
an advantage of the IS-TF method over OFMD simulations,
i.e., it is an all-electron model so no pseudopotential is
needed.
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FIG. 3. (Color online) Ion-ion pair distribution functions for CH1.36. Comparison of the IS-QM (solid lines) and the QMD simulations
(dashed lines) for C-C (black, rightmost lines), C-H (red, middle lines), and H-H (green, leftmost lines). For panels with only IS-QM curves,
corresponding QMD results were not available.

Next we turn to a comparison between IS-QM and DFT-MD
where both use the Kohn-Sham functional for the same cases
of a CH1.36 mixture. Our QMD simulations are performed
using the Vienna ab initio Simulation Package (VASP) [29].
Born-Oppenheimer MD within the NV T ensemble with a
Nosé-Hoover thermostat [30,31] are used throughout. We use
a time step of 0.2 fs, except for the very highest temperatures
of our study, where we need to use a 0.1-fs time step in
order to converge the internal energy and pressure to the
desired accuracy. We use the generalized gradient approx-
imation of DFT with the Perdew-Burke-Ernzerhof [32,33]
exchange-correlation functional. Projector-augmented wave
(PAW) [34,35] pseudopotentials are used to account for the
core electrons. We used the harder potentials for C and H in the
VASP PAW library (with core radii of 1.1 and 0.8 a.u., respec-
tively). The plane-wave cutoff is set to 1300 eV. The electronic
density is constructed from single-particle wave functions by
sampling only at the ( 1

4 , 1
4 , 1

4 ) of the Brillouin zone. The CH1.36

mixture was simulated with 236 atoms (100 C and 136 H).
We also conducted pure carbon simulations (see below) with
64 atoms.

The comparison of ion-ion pair distribution functions is
shown in Fig. 3. The agreement is very good for higher
temperatures and higher densities, but degrades considerably
at the lower temperatures and densities. To elucidate the
origin of this disagreement we compare in Fig. 4 ion-ion
pair distributions for pure carbon (i.e., not a mixture), over

a similar range of conditions. A similar trend in agreement
with respect to density and temperature is seen. This indicates
that it is not the extension of our model to mixtures that is the
source of the disagreement, but rather that the approximations
involved in IS-QM are breaking down at the lowest tempera-
tures and densities for carbon. Angular distribution functions
extracted from the simulations of pure carbon (not shown)
indicate angular preference in nearest-neighbor positions for
the lower temperatures and densities in Fig. 4. This implies
that significant bonding between the carbon atoms remains at
these temperatures and densities. Such bonding is not captured
in the IS-QM model, which approximates the electron density
as a superposition of spherically symmetric pseudoatoms. In
contrast to this disagreement, in [12] good agreement with
QMD simulations for aluminum was found at solid density
(2.7g/cm3) and down to 2 eV (23.2 kK). Clearly, the fact
that aluminum forms a simple liquid favors the superposition
approximation, whereas for carbon and CH1.36 strong bonding
and angular effects must be overcome by increasing the density
or temperature before the model becomes accurate. This is
supported by the fact that there is good agreement with OFMD
simulations for CH1.36, for the same conditions, where the use
of the TF functional in the OFMD simulations precludes bond-
ing effects (though not other angular effects). The excellent
agreement between the IS-QM model and QMD simulations
for CH1.36 at 15 g/cm3 at 100 kK is expected to continue to
higher densities and temperatures. For higher temperatures
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FIG. 4. (Color online) Ion-ion pair distribution functions for pure C. Comparison of the IS-QM (solid lines) and the QMD simulations
(dashed lines).

than shown QMD simulation quickly becomes prohibitively
expensive, whereas the IS-QM model remains tractable up to
thousands of eV.

VIII. CONCLUSIONS

A model for the rapid calculation of the electronic
and ionic structures of warm and hot dense mixtures has
been presented. This is an extension of a previous model
[12,13] for homonuclear plasmas. Comparisons with DFT-MD
simulations for CH1.36 demonstrate excellent agreement on
the ionic and electronic structures for Thomas-Fermi based
calculations, while agreement between Kohn-Sham-based
calculations is excellent for higher temperatures and densi-
ties but becomes poor at lower temperatures and densities.
A similar result is found by comparing Kohn-Sham-based
calculations for a pure carbon plasma under similar conditions.
Such disagreement had not been previously observed in
comparisons for a pure aluminum plasma [12]. This is
explained as a breakdown of the superposition approximation
that underpins the model, as it cannot describe the bonding
between carbon atoms observed in the Kohn-Sham DFT-MD
simulations.

These initial comparisons indicate that the method is
a promising technique for calculating electronic and ionic
structures where bonding is not significant. In addition, the
method is very rapid relative to the corresponding DFT-
MD simulations. Thomas-Fermi-based calculations with the

present model take a few minutes on an single processor,
while Kohn-Sham-based calculations can take a few hours.5

Moreover, the model is all electron, meaning that no pseu-
dopotential is used, in contrast to DFT-MD simulations. We
note that the Kohn-Sham version of the model can access
the high-temperature regime (thousands of eV), something
that is not computationally tractable with Kohn-Sham DFT-
MD simulations. Another advantage of the model is that
highly asymmetric mixtures (i.e., high mass ratios, charge
ratios, or extreme mixing fractions) present no additional
difficulties, in contrast with DFT-MD simulations. Finally,
we note that the model could be used as the basis for
predicting x-ray-scattering spectra [36] and for calculating
ionic transport properties on the basis of effective potential
theory [37].
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5Our IS-QM calculations use a shared memory, OpenMP parallel
routine to solve for the continuum states [13].

033110-7



C. E. STARRETT, D. SAUMON, J. DALIGAULT, AND S. HAMEL PHYSICAL REVIEW E 90, 033110 (2014)

[1] U.S. Department of Energy report, 2009, http://science.energy.
gov/�/media/fes/pdf/workshop-reports/Hedlp_brn_workshop_
report_oct_2010.pdf.

[2] G. Chabrier and E. Schatzman, in IAU Colloquium 147: The
Equation of State in Astrophysics, edited by G. Chabrier and
E. Schatzman (Cambridge University Press, Cambridge, 1994).

[3] B. A. Hammel, S. W. Haan, D. S. Clark, M. J. Edwards, S. H.
Langer, M. M. Marinak, and M. V. Patel, High Energy Density
Phys. 6, 171 (2010).

[4] S. Hamel, L. X. Benedict, P. M. Celliers, M. A. Barrios, T. R.
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